Scientists racing to build invisibility devices

Metamaterials are the tool of choice for scientists racing to build all sorts of wave-cloaking devices

By Reuters

Singapore: A new way of assembling things, called metamaterials, may in the not too distant future help to protect a building from earthquakes by bending seismic waves around it. Similarly, tsunami waves could be bent around towns, and soundwaves bent around a room to make it soundproof.

While the holy grail of metamaterials is still to make objects and people invisible to the eye, they are set to have a more tangible commercial impact playing more mundane roles — from satellite antennas to wirelessly charging cellphones.

Metamaterials are simply materials that exhibit properties not found in nature, such as the way they absorb or reflect light. The key is in how they’re made. By assembling the material — from photonic crystals to wire and foam — at a scale smaller than the length of the wave you’re seeking to manipulate, the wave can, in theory, be bent to will.

This makes metamaterials the tool of choice for scientists racing to build all sorts of wave-cloaking devices, including the so-called invisibility cloak — a cover to render whatever’s inside effectively invisible by bending light waves around it.

“The invisibility cloak was just one more thing we were discovering — that we have all this flexibility in this material and here’s another thing we can do,” David Smith of Duke University, widely regarded as one of the founding fathers of metamaterials, said in a telephone interview.

“But we’re equally interested in seeing this transition in making a difference in people’s lives.” Indeed, Smith’s own journey from laboratory to factory illustrates that while metamaterials have for some become synonymous with “Harry Potter” cloaks, their promise is more likely to be felt in a range of industries and uses, from smaller communication devices to quake-proof buildings.

Bending light

At the heart of both metamaterials and invisibility are waves. If electromagnetic waves — whether visible light, microwave or infrared — can be bent around an object it would not be visible on those wavelengths. It was long thought you couldn’t control light in this way with natural materials as their optical properties depended on the chemistry of the atoms from which they were made.

It was only when Smith and his colleagues experimented with altering the geometry of material in the late 1990s that they found they could change the way it interacted with light, or other kinds of wave — creating metamaterials. With that, says Andrea Alu, an associate professor at the University of Texas at Austin, scientists found “it may be possible to challenge rules and limitations that were for centuries considered written in stone.” The past decade has seen an explosion in research that has built on Smith’s findings to make objects invisible to at least some forms of light.

“There have now been several demonstrations of cloaking at visible wavelengths, so cloaking is truly possible and has been realised,” says Jason Valentine of Vanderbilt University, who made one of the first such cloaks. These, however, have limitations — such as only working for certain wavelengths or from certain angles. But the barriers are falling fast, says Valentine.

In the past year, for example, Duke University’s Yaroslav Urzhumov has made a plastic cloak that deflects microwave beams using a normal 3D printer, while Alu has built an ultra-thin cloak powered by electric current.

Invisible army

Funding much of this US research is the military. Urzhumov said in an email interview that the US Department of Defence is “one of the major sponsors of metamaterials and invisibility research in the US.” The Defence Advanced Research Projects Agency, which commissions advanced research for the Department of Defence, has funded research into metamaterials since 2000, according to the department’s website.

Military interest in metamaterials was primarily in making a cloak, said Miguel Navarro-Cia of Imperial College London, who has researched the topic with funding from the European Defence Agency and US military.

But an invisibility cloak needn’t be a sinister tool of war.

Vanderbilt’s Valentine suggests architectural usage. “You could use this technology to hide supporting columns from sight, making a space feel completely open,” he said.

Other potential uses include rendering parts of an aircraft invisible for pilots to see below the cockpit, or to rid drivers of the blind spot in a car.

Read more » Gulfnews
http://gulfnews.com/news/world/usa/scientists-racing-to-build-invisibility-devices-1.1270952

About these ads

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s